Lớp 1

Đề thi lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Lớp 3 - kết nối tri thức

Lớp 3 - Chân trời sáng tạo

Lớp 3 - Cánh diều

Tài liệu tham khảo

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Lớp 6

Lớp 6 - liên kết tri thức

Lớp 6 - Chân trời sáng sủa tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Lớp 7 - liên kết tri thức

Lớp 7 - Chân trời sáng sủa tạo

Lớp 7 - Cánh diều

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 10

Lớp 10 - kết nối tri thức

Lớp 10 - Chân trời sáng sủa tạo

Lớp 10 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

IT

Ngữ pháp giờ Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Nhằm giúp chúng ta ôn luyện cùng giành được công dụng cao trong kì thi tuyển chọn sinh vào lớp 10, banvethicong.com.vn biên soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu tạo ra đề Trắc nghiệm - từ luận mới. Cùng rất đó là các dạng bài xích tập hay bao gồm trong đề thi vào lớp 10 môn Toán với cách thức giải đưa ra tiết. Mong muốn tài liệu này sẽ giúp học sinh ôn luyện, củng cố kỹ năng và sẵn sàng tốt mang đến kì thi tuyển sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề thi tuyển sinh vào lớp 10 môn toán

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 tất cả đáp án (Trắc nghiệm - trường đoản cú luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 có đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP tp hà nội năm 2021 - 2022 bao gồm đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ các dạng bài bác tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục và Đào chế tạo .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Câu 1: (2 điểm) Rút gọn gàng biểu thức sau:

a) A=12−253+60.

b) B=4xx−3.x2−6x+9x với 0 x2−2mx+m2−m+3=0 (1), cùng với m là tham số.

a) Giải phương trình (1) cùng với m = 4.

b) Tìm những giá trị của m nhằm phương trình (1) có hai nghiệm với biểu thức: P=x1x2−x1−x2 đạt giá bán trị nhỏ tuổi nhất.

Câu 3: (1,5 điểm)

Tình cảm mái ấm gia đình có sức khỏe phi trường. Chúng ta Vì quyết chiến – Cậu bé xíu 13 tuổi qua thương nhớ em trai của mình đã vượt sang một quãng đường dài 180km từ tô La đến bệnh viện Nhi Trung ương tp. Hà nội để thăm em. Sau khoản thời gian đi bằng xe đạp 7 giờ, chúng ta ấy được lên xe cộ khách cùng đi tiếp 1 giờ trong vòng 30 phút nữa thì cho tới nơi. Biết gia tốc của xe khách lớn hơn vận tốc của xe đạp điện là 35 km/h. Tính gia tốc xe đạp của chúng ta Chiến.

Câu 4: (3,0 điểm)

cho đường tròn (O) tất cả hai 2 lần bán kính AB cùng MN vuông góc cùng với nhau. Bên trên tia đối của tia MA đem điểm C không giống điểm M. Kẻ MH vuông góc với BC (H thuộc BC).

a) minh chứng BOMH là tứ giác nội tiếp.

b) MB giảm OH tại E. Minh chứng ME.MH = BE.HC.

c) hotline giao điểm của mặt đường tròn (O) với mặt đường tròn ngoại tiếp ∆MHC là K. Minh chứng 3 điểm C, K, E trực tiếp hàng.

Câu 5: (1,0 điểm) Giải phương trình: 5x2+27x+25−5x+1=x2−4.

 

HƯỚNG DẪN GIẢI ĐỀ SỐ 03

Câu 1:

a) A=12−253+60=36−215+215=36=6

b) với 0 B=4xx−3.x2−6x+9x =2xx−3.x−32x=−2x3−x.x−3x=−2x3−x3−xx=−2

Câu 2:

1) vì đồ thị hàm số trải qua điểm M(1; –1) bắt buộc a+ b = -1

vật dụng thị hàm số đi qua điểm N(2; 1) nên 2a + b = 1

yêu thương cầu bài bác toán a+b=−12a+b=1⇔a=2b=−3

Vậy hàm số buộc phải tìm là y = 2x – 3.

2)

a) cùng với m = 4, phương trình (1) trở thành: x2−8x+15=0. Có Δ=1>0

Phương trình gồm hai nghệm phân biệt x1=3; x2=5;

b) Ta có: ∆" = −m2−1.m2−m+3=m2−m2+m−3=m−3.

Phương trình (1) có hai nghiệm x1, x2 lúc ∆" 0 ⇔ m−3≥0⇔m≥3

Với m≥3, theo định lí Vi–ét ta có: x1+x2=2mx1.x2=m2−m+3

Theo bài bác ra: P=x1x2−x1−x2=x1x2−(x1+x2)

Áp va định lí Vi–ét ta được:

P=m2−m+3−2m=m2−3m+3 =m(m−3)+3

vày m≥3 nên m(m−3)≥0 , suy ra P≥3. Vết " = " xẩy ra khi m = 3.

Vậy giá bán trị nhỏ nhất của p là 3 khi m = 3.

Câu 3:

Đổi 1 giờ nửa tiếng = 1,5 giờ.

Xem thêm: Kích Thước Dương Vật Chuẩn Của Người Đàn Ông Có "Cậu Nhỏ” Dài Nhất Thế Giới

Gọi gia tốc xe đạp của người sử dụng Chiến là x (km/h, x > 0)

gia tốc của ô tô là x + 35 (km/h)

Quãng đường các bạn Chiến đi bằng xe đạp điện là: 7x (km)

Quãng đường bạn Chiến đi bằng ô tô là: 1,5(x + 35)(km)

vị tổng quãng đường chúng ta Chiến đi là 180km nên ta gồm phương trình:

7x + 1,5(x + 35) = 180 7x + 1,5x + 52,2 = 180 8,5x = 127,5 x = 15

(thỏa mãn)

Vậy bạn Chiến đi bằng xe đạp điện với gia tốc là 15 km/h.

Câu 4:

*

a) Ta có: MOB^=900 (do AB⊥MN) cùng MHB^=900(do MH⊥BC)

Suy ra: MOB^+MHB^=900+900=1800

=> Tứ giác BOMH nội tiếp.

b) ∆OMB vuông cân nặng tại O bắt buộc OBM^=OMB^ (1)

Tứ giác BOMH nội tiếp buộc phải OBM^=OHM^ (cùng chắn cung OM)

cùng OMB^=OHB^ (cùng chắn cung OB) (2)

tự (1) và (2) suy ra: OHM^=OHB^

=> HO là tia phân giác của MHB^ => MEBE=MHHB (3)

Áp dụng hệ thức lượng trong ∆BMC vuông tại M tất cả MH là đường cao

Ta có: HM2=HC.HB⇒HMHB=HCHM (4)

từ bỏ (3) và (4) suy ra: MEBE=HCHM5⇒ME.HM=BE.HC (đpcm)

c) vì MHC^=900(do MH⊥BC) đề xuất đường tròn nước ngoài tiếp ∆MHC có 2 lần bán kính là MC

⇒MKC^=900 (góc nội tiếp chắn nửa mặt đường tròn)

MN là đường kính của con đường tròn (O) nên MKN^=900 (góc nội tiếp chắn nửa mặt đường tròn)

⇒MKC^+MKN^=1800

=> 3 điểm C, K, N thẳng sản phẩm (*)

∆MHC ∽ ∆BMC (g.g) ⇒HCMH=MCBM. 

nhưng MB = BN (do ∆MBN cân tại B)

=>HCHM=MCBN, kết phù hợp với MEBE=HCHM (theo (5) )

Suy ra: MCBN=MEBE . Nhưng EBN^=EMC^=900 => ∆MCE ∽ ∆BNE (c.g.c)

⇒MEC^=BEN^, mà MEC^+BEC^=1800 (do 3 điểm M, E, B trực tiếp hàng)

⇒BEC^+BEN^=1800

=> 3 điểm C, E, N thẳng mặt hàng (**)

từ bỏ (*) và (**) suy ra 4 điểm C, K, E, N thẳng hàng

=> 3 điểm C, K, E thẳng hàng (đpcm)

Câu 5: ĐKXĐ: x≥2

Ta có: 5x2+27x+25−5x+1=x2−4

⇔5x2+27x+25=5x+1+x2−4

⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)

⇔4x2+2x+4=10x+1)(x2−4)⇔2x2+x+2=5(x+1)(x2−4) (1)

giải pháp 1:

(1) ⇔x2−2x−44x2−13x−26=0

Giải ra được:

x=1−5(loại); x=1+5(nhận); x=13+3658 (nhận); x=13−3658 (loại)

giải pháp 2:

(1) ⇔5x2−x−2x+2=2x2−x−2+3x+2 (2)

Đặt a=x2−x+2; b=x+2 (a≥0; b≥0)

cơ hội đó, phương trình (2) trở thành:

5ab=2a2+3b2⇔2a2−5ab+3b2=0⇔a−b2a−3b=0⇔a=b2a=3b (*)

 – với a = b thì x2−x−2=x+2⇔x2−2x−4⇔x=1−5(ktm)x=1+5(tm)

 – cùng với 2a = 3b thì 2x2−x−2=3x+2⇔4x2−13x−26=0⇔x=13+3658 (tm)x=13−3658 (ktm)

Vậy phương trình sẽ cho gồm hai nghiệm: x=1+5 và x=13+3658 .

Sở giáo dục đào tạo và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Sở giáo dục và đào tạo và Đào chế tác .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện xác định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và con đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) và (0; 0)

C.(-3; ) D.(2; 2) cùng (-3; )

Câu 5: giá trị của k để phương trình x2 + 3x + 2k = 0 bao gồm 2 nghiệm trái vệt là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn gàng biểu thức

*

2) giải phương trình cùng hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong khía cạnh phẳng tọa độ Oxy đến Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) với m = -1 , hãy vẽ 2 vật dụng thị hàm số trên và một hệ trục tọa độ

b) tìm m để (d) và (P) giảm nhau trên 2 điểm minh bạch : A (x1; y1 );B(x2; y2) làm sao để cho tổng các tung độ của nhì giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

*

Tìm x để A (3,5 điểm) đến đường tròn (O) bao gồm dây cung CD chũm định. Hotline M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) giảm dây CD trên I. Mang điểm E bất kỳ trên cung mập CD, (E không giống C,D,N); ME giảm CD trên K. Các đường trực tiếp NE với CD cắt nhau tại P.

a) chứng tỏ rằng :Tứ giác IKEN nội tiếp

b) triệu chứng minh: EI.MN = NK.ME

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ

d) từ C vẽ mặt đường thẳng vuông góc với EN giảm đường trực tiếp DE trên H. Minh chứng khi E di động trên cung to CD (E không giống C, D, N) thì H luôn chạy trên một đường chũm định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Từ bỏ luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình sẽ cho bao gồm tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình vẫn cho biến chuyển

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình bao gồm 2 nghiệm rõ ràng :

*

Do t ≥ 3 đề nghị t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình sẽ cho bao gồm 2 nghiệm x = ± 1

*

Bài 2:

Trong mặt phẳng tọa độ Oxy mang đến Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = 1; (d): y = 2x – 1

Bảng quý giá

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là con đường parabol nằm phía trên trục hoành, nhấn Oy làm cho trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp tốt nhất

*

b) mang lại Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = mét vuông - (2m - 1)=(m - 1)2

(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm tất cả 2 nghiệm biệt lập

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) giảm (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ mang thiết đề bài, tổng những tung độ giao điểm bằng 2 cần ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 khi 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI và ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI trên K

=> K là trực tâm của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP dưới 1 góc đều bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp thuộc chắn cung PQ)(1)

Mặt không giống IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp thuộc chắn cung KE)(2)

Từ (1) và (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ∠EHC = ∠ECH => ΔEHC cân nặng tại E

=> EN là đường trung trực của CH

Xét con đường tròn (O) có: Đường kính OM vuông góc cùng với dây CD tại I

=> NI là con đường trung trực của CD => NC = ND

EN là đường trung trực của CH => NC = NH

=> N là chổ chính giữa đường tròn nước ngoài tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C thắt chặt và cố định => H thuộc mặt đường tròn thắt chặt và cố định

Sở giáo dục và đào tạo và Đào tạo .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn biểu thức sau:

*

2) đến biểu thức

*

a) Rút gọn biểu thức M.

b) Tìm những giá trị nguyên của x để giá trị tương ứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) search m để hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của mặt đường thẳng y = ax + b biết mặt đường thẳng trên đi qua hai điểm là

(1; -1) với (3; 5)

Bài 3 : ( 2,5 điểm)

1) đến Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình khi m = - 1

b) tìm kiếm m nhằm 2 nghiệm x1 cùng x2 thỏa mãn hệ thức: 4x1 + 3x2 = 1

2) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình

Một công ty vận tải đường bộ điều một vài xe cài để chở 90 tấn hàng. Khi đến kho hàng thì tất cả 2 xe cộ bị hỏng phải để chở hết số sản phẩm thì từng xe còn sót lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe được điều mang đến chở hàng là bao nhiêu xe? Biết rằng cân nặng hàng chở sinh hoạt mỗi xe là như nhau.

Bài 4 : ( 3,5 điểm)

1) mang đến (O; R), dây BC cố định không trải qua tâm O, A là điểm bất kì bên trên cung phệ BC. Cha đường cao AD, BE, CF của tam giác ABC giảm nhau trên H.

a) chứng minh tứ giác HDBF, BCEF nội tiếp

b) K là điểm đối xứng của A qua O. Chứng tỏ HK trải qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng tỏ Δ AHO cân

2) Một hình chữ nhật tất cả chiều dài 3 cm, chiều rộng bởi 2 cm, xoay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) mang lại a, b là 2 số thực làm thế nào để cho a3 + b3 = 2. Triệu chứng minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta có bảng sau:

√x-1- 2-112
√x-1023
xKhông vĩnh cửu x049

Vậy cùng với x = 0; 4; 9 thì M nhận quý hiếm nguyên.

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi đó ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) tất cả nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình tất cả nghiệm:

*

Theo phương pháp đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy lúc m =3 thì hai phương trình trên gồm nghiệm chung và nghiệm chung là 4

2) Tìm thông số a, b của con đường thẳng y = ax + b biết con đường thẳng trên đi qua hai điểm là

(1; -1) với (3; 5)

Đường trực tiếp y = ax + b đi qua hai điểm (1; -1) với (3; 5) cần ta có:

*

Vậy con đường thẳng đề xuất tìm là y = 2x – 3

Bài 3 :

1) mang lại Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) khi m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình tất cả nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình có tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = mét vuông - 2m + 1 - 20m + 24 = mét vuông - 22m + 25

Phương trình có hai nghiệm ⇔ Δ ≥ 0 ⇔ mét vuông - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài xích ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do kia ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy gồm hai quý giá của m thỏa mãn bài toán là m = 0 với m = 1.

2)

Gọi con số xe được điều mang lại là x (xe) (x > 0; x ∈ N)

=>Khối lượng sản phẩm mỗi xe pháo chở là:

*
(tấn)

Do gồm 2 xe pháo nghỉ đề nghị mỗi xe còn lại phải chở thêm 0,5 tấn so với ý định nên mỗi xe đề nghị chở:

*

Khi kia ta bao gồm phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe cộ được điều mang đến là 20 xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là đường cao)

∠BFH = 90o (CF là mặt đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là đường cao)

∠BEC = 90o (BE là mặt đường cao)

=> 2 đỉnh E và F cùng chú ý cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là mặt đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KC⊥AC

BH⊥AC (BH là mặt đường cao)

=> HB // ck

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> nhị đường chéo cánh BC với KH giảm nhau tại trung điểm mỗi mặt đường

=> HK trải qua trung điểm của BC

c) gọi M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân nặng tại O gồm OM là trung đường

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) với (2) => OA = AH => ΔOAH cân tại A

2)

Quay hình chữ nhật vòng quanh chiều dài được một hình tròn trụ có bán kính đáy là R= 2 cm, chiều cao là h = 3 cm